I came across this interesting piece on siliconANGLE  focused on how big data is coming to cardiovascular medicine, via a precision medicine initiative. I found the read to be fascinating, and I recommend you read the article, provided in the references section below.

In summary, the American Heart Association (AHA) is collaborating with Amazon Web Services to build a data analytics platform. Details are thin, so I am unsure of how much is hype and how much is reality. I assume, as time progresses, it will indeed turn out to be very useful. The article describes the platform as a “marketplace” (yes, concerning, in more ways than one) for various forms of patient data:

  1. Personal Data
  2. Clinical Trial Data
  3. Pharmaceutical Data
  4. Hospital Data, and apparently, other data.

The goal here is to use this to personalize treatments for patients. Read more in the article. I believe that personalized medicine and AI share a deep connection. I want to share some of my own thoughts of how such efforts could give way to lasting influence by AI on healthcare:

  1. Personalized medicine needs knowledge, which comes through data. Similarly, learning requires data. Data helps you glean patterns, which is what learning is. Thus, AI and Personalized medicine are the two snakes of Caduceus, which in this case is the data itself. Thus, efforts to bring about personalized medicine should be expanded vastly.
  2. Knowledge is supreme. When it comes to personalized medicine and such, you hear all this hype of n=1. Unfortunately, for medicine to be effective, first you need large quantities of data, and with that the ability to glean actionable information from the data, to understand diseases, treatments, and their effectiveness. Whether you see this on a gross scale, or all the way down to a Single Nucleotide Polymorphism (SNP), this type of knowledge needs to be the horse in front of the cart. Without actionability, the patterns recognized through the data might not be useful. This knowledge doesn’t exist, so the hype cycle might cause enough damage and reduce funding levels later on. Realistic expectations ought to be set so that this doesn’t happen.
  3. There are two problems with healthcare data that come to the fore. First, we don’t really know that is being collected is appropriate. There is a lot of day dreaming about genetic data, racial data, physiological parameters (one company claims to be measuring 300 parameters!)  and other measurands and the hope that these will somehow magically transform themselves into diagnoses and treatments. With enough research, they will, but this will take expensive effort and time. Low hanging fruits such as breast cancer diagnoses, etc., are pushing people to imagine that the same level of rapid success will be seen throughout the healthcare continuum. There is no way to know if this will be the case.
  4. The second problem with healthcare data is about ownership and walls around the data. For example, will AHA share the data with the general public? If not, why not? Terms like “marketplace” give me pause. They might very well be just terms used to explain things colloquially. On the other hand, it is important to think about the issue of data sitting behind paywalls, or blocked of with HIPAA as a convenient excuse (more posts to come on all this). Data Democracy is a critical need for the progress of medicine and for Artificial Intelligence, eventually.
  5. What if the data is not free? What about the insights? Do we suddenly now start paying for the insights? Or, would CMS start reimbursing Doctors for personalized medicine? For the use of AI tools? There are several questions here, and only time will answer them.

Conclusion: 

Data will give us clinical insights. These insights will eventually fragment into meaningful personalized healthcare. The same data will lead to even more advances with AI. However, unanswered questions over data ownership and access remain.

 

References:

  1. https://siliconangle.com/blog/2018/01/22/can-precision-medicine-break-chokehold-on-healthcare-big-data-reinvent-womenintech/
  2. Image, Courtesy Pexels: https://www.pexels.com/photo/interior-of-office-building-325229/